The zoo of binary stars

Henri Boffin

The Sun is single...

...but most stars aren't

The brightest star in the night sky is a binary

The presence of Sirius B was first detected by observing the wobble in the motion of Sirius A ...an Astrometric Binary

A1V + DA2

P=50 yr

Among the closest ones ...

Luhman-16

Binary Brown dwarfs 2 pc away separation ~ 3 au Visual binary

Boffin+ 14 Bedin+ 17

Another famous multiple

Starry night - Van Gogh

Adapted from de Mink 12

Another famous multiple

Starry night - Van Gogh

Lifespan star or "jumyouboshi" (**寿命星**)

Married couple in Indian astronomy

Adapted from de Mink 12

Another famous multiple

Adapted from de Mink 12

The Algol System

Primary: B8 V, 3.7 M⊙ **Secondary**: K2 IV, 0.8 M⊙

The Algol System

Primary: B8 V, 3.7 M⊙ **Secondary**: K2 IV, 0.8 M⊙

Algol paradox!

Mass Transfer!

Another extreme: Eta Carinae

LBV 120 M⊙ + 30 M⊙ companion Eccentric system P = 5.5 years Undergo outburst

The next Supernova in our Galaxy?

SDSSJ010657.39-100003.3

Detached binary P = 39.1 min 2 WDs A = 0.32 R•

Will merge in 37 Myr to become a sdB star

Kilic+11

HM Cancri

Two white dwarfs

One is transferring mass to the other!

Orbital period 321 seconds!

Distance between stars: <100 000 km

Orbital velocity > 10^{6} km/h

Masses: 0.27 and 0.55 $M\odot$

Roelofs+ 10

Super-dense neutron star is fastest ever seen

Astronomers have discovered an ultra-dense star that orbits with a dying stellar companion once every 93 minutes, making it the fastest-orbiting star of its kind.

This artist's impression shows the speedy companion (right) as it races around the pulsar PSR JI311-3430 (left). The energetic gamma-radiation emitted by the pulsar heats and consequently evaporates the companion. The pulsar, which completes one orbit every 93 minutes, is surrounded by its strong magnetic field (blue). NASA/DOE/Fermi LAT Collaboration/AEI

Black widow

Milli-second pulsar with a lowmass companion

The companion transferred mass to the pulsar and is now being evaporated by the pulsar

A dozen known in MW

Oct. 25, 2012, 9:36 PM CEST / Source: Space.com By Mike Wall

Binary star

a system of two stars, which are so close that their gravitational interaction causes them to orbit around their common centre of mass.

Why Binaries?

"*To understand galaxies, we need to understand stars, but since most are members of binary and multiple star systems, we need to study and understand binary stars...*

...And sometimes binary stars are the only way to understand single stars ..."

-R. Izzard (2009)

Why Binaries?

Accurate stellar masses, radii, luminosities

Help understand many events, e.g., PNe, novae, short gamma-ray bursts, Type Ia SNe, chemically peculiar stars, blue stragglers

Galactic evolution: Type Ia Sne, novae

Why Binaries?

"Even though a star may be single now, it may well have been a member of a binary system in the past."

Indeed, whenever one is confronted with a new stellar phenomenon, it is probably advisable to first thoroughly explore the possibility of a binary interaction as a cause of the phenomenon before starting to adjust the input physics in the stellar calculation."

-P. Podsiadlowski

Multiplicity is function of primary mass

Raghavan+ 10 (see also Clark+ 11)

Mass of primary

Close binary star fraction of massive stars

Chini+ 12; see also Sana+12

the close binary fraction decreases from 90% (80 M_{\odot}) to 20% (3 M_{\odot})

SB2: O stars like to be born as twins of similar mass

Is a massive star appears to be single...

... you probably did not look hard enough

... or it used to be a binary in the past (merger, mass gainers, ejected)

Massive stars in 6 young clusters in the Milky Way

71 single and multiple Otype objects

Sana+ 12

40 detected binaries

Multiplicity is function of primary mass – low mass stars

Raghavan + 10

Fuhrmann + 17

But is this the full story? What about stars that are secondaries?

What about the mass ratio distribution?

Binary formation mechanisms? e.g. random pairing, f(q) constant

Evolution of binary systems? e.g. twins population?

Does f(q) depend on MA?

S⁹ sample: Mass ratio distribution

Continuous distribution?

Boffin & Pourbaix 17

Multiplicity is function of primary mass

Majority of solar-like stars are in binaries!

Binarity of G, K, M stars may be similar and above 50%

Boffin & Pourbaix 17 See also Whitworth & Lomax 15

Mass of primary

Period distribution

F7-K dwarfs

Log-Normal distribution from 1 day to 10 million years

 $< \log P_{days} > = 4.8$

 $\sigma \log P = 2.3$

Duquennoy & Mayor 91 Halbwachs+ 10

Close binaries

stars in binaries can interact in various ways:

tidal interaction

e, log P diag.

wind accretion

PRGs, symbiotic stars, novae, SN Ia

Roche-lobe overflow

CVs, Algols

common envelope evolution sdB, Bin. CSPNe

Tidal effects on the orbit

1. Circularisation

$$t_{\rm circ} \sim (q(1+q)/2)^{-1} (a/R)^8$$

~ $10^6 q^{-1} ((1+q)/2)^{5/3} P^{16/3}$ years

2. Synchronisation of component's rotation

$$t_{\rm sync} \sim q^{-2} (a/R)^6 \sim 10^4 ((1+q)/2q)^2 P^4$$
 years

Can occur on a timescale shorter than stellar evolution!		
Р	t _{sync}	t _{circ}
day	yr	yr
1	10^{4}	10^{6}
10	10 ⁸	10^{11}

Zahn 77

or "*The e - log P conference*" ! Cambridge University Press, 1992

> EDITED BY ANTOINE DUQUENNOY and MICHEL MAYOR

Figure 1. The period-eccentricity distribution for a) pre-main sequence binaries, b) mainsequence solar-mass binaries in the Hyades, Praesepe and Coma clusters [DMM92] and c) main-sequence solar-mass binaries in the field [DuM91].

Red giants in open cluster

THE LIFE CYCLE OF STARS

Massive Star

Sun-like Star

Red Giant

Star-Forming Nebula Red Supergiant

Planetary Nebula

Neutron Star

White Dwarf

Black Hole

Supernova

Different kind of systems \rightarrow a Zoo!

A. Jorissen

Close binaries

stars in binaries can interact in various ways:

tidal interaction

Detached systems

PRGs, symbiotic stars, novae, SN Ia
Roche Potential Assumes: synchronous rotation (x,y,z) circular orbit r₁ r₂ 2 point masses rotating frame m₄ m₂ С а $\omega^2 = \left(\frac{2\pi}{P}\right)^2 = \frac{GM}{a^3}$ $r_1^2 = x^2 + y^2 + z^2$ $r_2^2 = (x - a)^2 + y^2 + z^2$ $\frac{x_c}{a} = \frac{m_2}{M} = \frac{q}{1+q} \qquad q \equiv \frac{m_2}{m_1} \le 1$ $\Phi = -\frac{G m_1}{r} - \frac{G m_2}{r} - \frac{\omega^2}{2} \left[\left(x - x_c \right)^2 + y^2 \right]$

K. Horne

Roche lobe

Potential defines limit of stability: Roche lobe

If star is larger than its Roche lobe, mass is transferred to the companion \rightarrow

Roche lobe overflow (RLOF)

Roche lobe

Eggleton 83

$$\frac{R_L}{a} \approx \frac{0.49 \ q^{2/3}}{0.69 \ q^{2/3} + \ln(1+q^{1/3})}$$

Comparison between radius of star and R_L defines status of system: detached semi-detached contact Detached binaries

- \rightarrow Mass transfer takes place through stellar wind
- \rightarrow Red giants, AGB stars (for low- and intermediate-mass)
- \rightarrow Massive stars (O stars, WR stars)

Red giant Massive star 1. Hoyle-Lyttleton formalism for a single star accreting matter flowing at a velocity v_{∞} , with gas pressure unimportant (hence cool gas):

Accretion radius: $v_{\infty}^2/2 = GM/R_{H-L}$ Accretion rate:

 $\dot{M}_{\rm H-L} = \pi R_{\rm H-L}^2 v_{\infty} \rho_{\infty} = 2\pi \; \frac{(G \; M)^2}{v_{\infty}^3} \rho_{\infty}$

Hoyle & Lyttleton 1939, Proc. Cam. Phil. Soc. 35, 405 Bondi 1952, MNRAS 114, 195 Bondi & Hoyle 1944, MNRAS 104, 273 2. Bondi formalism for accretion dominated by gas pressure, with zero relative gas-star velocity:

Accretion radius: $c^2/2 = GM/R_B$ Accretion rate: $\dot{M}_B = \beta \pi R_B^2 c \rho_\infty$

where c = sound speed, β is a parameter of order unity depending on the polytropic index of the gas.

3. Bondi-Hoyle formalism is an interpolation between these two extreme cases: Accretion rate:

$$\dot{M}_{\rm B-H} = \beta \pi R_{\rm H-L}^2 v_{\infty} \rho_{\infty} \left(\frac{(v_{\infty}/c)^2}{1 + (v_{\infty}/c)^2} \right)^{3/2}$$

WIND ACCRETION

Numerical simulations (SPH): confirm the validity of the concept for simple wind accretion flows

What about in binary systems?

Boffin & Anzer 1994

WIND ACCRETION

In binary systems:

 v_{∞}^{2} replaced by $(v_{W}^{2} + v_{orb}^{2})$ ρ_{∞} computed from mass loss

$$\dot{M}_{acc,2} = -\beta \mu^2 \frac{v_{orb}^4}{(v_w^2 + v_{orb}^2 + c^2)^{3/2}} \dot{M}_{w,1}$$
$$\mu = \frac{M_2}{M_1 + M_2}$$

Results depends on ratio between wind and orbital velocity : If $v_{orb} \ll v_w \rightarrow$ only deflection (Zeta Aurigae and O-type binaries)

If $v_{orb} \approx v_w$ or $v_{orb} > v_w \rightarrow$ Coriolis effect important \rightarrow numerical simulations

Wind accretion with an AGB

In AGB stars binaries of interest, the wind speed is smaller or comparable to the orbital velocity $v_w = 5-15 \text{ km/s} < v_{orb} = 20-30 \text{ km/s}$ Not a Bondi-Hoyle (even modified) type flow

Coriolis and centrifugal forces play a vital role

Boffin+ 94, Theuns+ 96

AGB star: R Scl

a = 60 AU P = 350 years (!) $M_1+M_2 = 2 M_{\odot}$ M_1 suffered a thermal pulse event about 1800 years ago that lasted for about 200 years

Carbon star: AFL 3068

A case in point: Barium stars

Ba stars: A class of chemically-peculiar giants known since the 50's

Red giant enriched in s-process elements and carbon

Not evolved enough to have produced these elements

Barnbaum (1996), ApJS 105, 419

A case in point: Barium stars

The slow-neutron-capture (s-) process of nucleosynthesis takes place at the end of the AGB phase.

Ba stars are not in these phases —> cannot be explained by single star evolution!

A case in point: Barium stars

THE BARIUM STARS*

ROBERT D. MCCLURE

Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road Victoria, BC V8X 4M6, Canada

Received 1983 October 15

Ba stars are formed

through binary interaction

The barium stars are Population I G-K giants that have enhanced abundances of carbon and s-process elements, and are probably related in their peculiarities to several other carbon enhanced red-giant types such as CH, R, N, and S stars. Since the abundance anomalies in the barium stars are likely the result of mixing of processed material from deep within a stellar interior, and since they are numerous with many bright examples suitable for detailed observations, these stars provide very valuable information on nucleosynthesis, and the advanced stages of stellar evolution. A clue to the origin of the anomalous abundances in the barium stars is the recent discovery that they are likely all members of binary systems.

Key words: barium stars-carbon stars-nucleosynthesis-stellar evolution

Astron. Astrophys. 205, 155-163 (1988)

Can a barium star be produced by wind accretion in a detached binary?

H.M.J. Boffin* and A. Jorissen*

Institut d'Astronomie, d'Astrophysique et de Géophysique, Université Libre de Bruxelles, C.P. 165, Av. F. Roosevelt 50, B-1050 Bruxelles, Belgium

Received January 29, accepted May 18, 1988

Master thesis done in 1987 35th anniversary!

Formation of barium stars

White dwarf companion

Chemically peculiar star polluted by a former AGB companion.

Prototypical post binary interaction binary system.

Escorza+19

Barium stars

116

JORISSEN AND BOFFIN: TO Ba OR NOT TO Ba?

Confirmation of model: Period of Ba stars are longer than those of normal giants

But eccentricity? Smaller, but non-zero

And can we really avoid RLOF?

CSPN is G5-G8 subgiant

It is enriched in Ba

NV observations reveal presence of a hot companion

→ Baríum star!

Fresh out of the oven: PN A 70

Because we still see the planetary nebula, the WD is still fresh out of the oven. Accretion just happened!

Miszalski, Boffin+ 12; Jones, Boffin+ 22

Open clusters

The closest laboratories for studying stellar evolution

A single stellar population

They allow us to find stars that don't lie along the traditional expected path of stellar evolution!

> NGC 265 Image Credit: ESA and NASA Acknowledgment: E. Olszewski (University of Arizona)

Blue straggler stars

Brighter and bluer than main sequence Turnoff (MSTO)

 $M_{BSS} > M_{MS}$

Formations mechanisms; binary evolution, stellar collisions and hierarchical triple systems

NGC 188 blue stragglers

Mathieu & Geller 2009

NGC 188 blue stragglers

Mathieu & Geller 2009

Binary properties reveal formation channel(s)

Geller+2008

Observed **MS** and **BSS**, log(P) vs. e distribution and mass distribution

NGC 188 blue stragglers

Mathieu & Geller 2009

Binary properties reveal formation channel(s)

Geller+2008

Observed MS and BSS, log(P) vs. e distribution and mass distribution

N_{BSS} vs log(age) with Gaia data

(a) BSS frequency is constant until log(age)~ 9

(b) Steep increase until log(age)=10

Symbiotic Stars

a cool red giant and a small hot companion seem to live in general harmony

Oxpeckers eat the parasites off of large animals like this African buffalo. But they're also parasites themselves, keeping wounds open and picking at scabs. Natphotos/Digital Vision/<u>Getty Images</u>

Nature of Mass Transfer?

Symbiotic stars can be divided into two categories based on the nature of the components:

(a) a lobe-filling giant and a A-F main sequence star

(b) a white dwarf or subdwarf and a red giant losing mass in a stellar wind

High-mass X-ray binaries

Vela X-1

X-ray binary, consisting of a neutron star and the 23.5 M⊙ B0.5 Ib supergiant star HD 77581

P = 8.964 days

 $M_{\rm NS}$ = (1.86 ± 0.32) M_{\odot}

High-mass X-ray binaries

NASA

BASED ON EAL SCIENCE

nal Aeronautics and

Cygnus X-1

P = 5.599829 days BH ~ 21 M $_{\odot}$ Companion: Blue supergiant O9.7 lab; 20-40 M $_{\odot}$

Stellar wind is focused to binary plane and creates an accretion disc

OBSERVED BY NASA'S NUSTAR AND CHANDRA X-RAY TELESCOPES

www.nasa.gov

Close binaries

stars in binaries can interact in various ways:

tidal interaction

wind accretion

Roche-lobe overflow

Semi-detached systems _{CVs, Algols}

Roche lobe overflow

Distinguish case according to stellar evolution stage

Mass-transfer modes : cases A, B and C case A = RLOF during

main sequence

case B = RLOF during first giant branch

case C = RLOF during asymptotic giant branch

O. Pols

Massive stars interact: Roche lobe overflow

H. Sana et al. Science 2012;337:444-446

Stripped Envelope (SE) Sne

Formation of a Ring

Coriolis force → angular momentum!

Roche lobe overflow

If $R_{circ} > R_*$, a disc forms If accreting star is compact, jets form

This is the case when accretor is WD (CV), NS (LMXB), BH (HMXB) Or even a MS if system is wide (symbiotic star)

If MS and short period, then direct impact (Algol)

Cataclysmic variables

Contains a main sequence star filling its Roche lobe and a white dwarf

Orbital period ~ few hours Separation ~ 1 solar radius

Angular momentum evolution:

- magnetic fields
- gravitational waves

Accreting object is a NS or a BH

Low-mass X-ray binaries
Cataclysmic variables

Contains a main sequence star filling its Roche lobe and a white dwarf

Orbital period ~ few hours Separation ~ 1 solar radius

But WD comes from an AGB which reached radius of several hundred solar radii!

 \rightarrow System has considerably shrunk!

How? Common envelope evolution Close binaries

stars in binaries can interact in various ways:

tidal interaction

wind accretion

Roche-lobe overflow

common envelope evolution

sdB, Bin. CSPNe

Mass Transfer Instability

Red giants have large convective envelopes → they react to mass loss by expanding

If radius increase is larger than Roche lobe's increase, the transfer becomes dynamically unstable

Common envelope evolution

From period of a few years to a day or less! The Butterfly Nebula

A planetary nebula

Planetary Nebulae

What happens if the common envelope is not ejected?

 \rightarrow The 2 stars merge!

Luminous red novae

R. Tylenda+

Spread due to photometric signal

Exploding events

lvanova+13

Crashing neutron stars can make gamma-ray burst jets

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

Mergers of WDs will lead to Type Ia Sne

Mergers of NS or BH will lead to GW emission

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

What should you have learned?

- Binary stars are everywhere most massive stars are in binaries and binaries make the most interesting systems
- Interaction can be tidal or mass transfer, and the latter can be via wind or via Roche lobe overflow
- Mass transfer can explain many different classes of binary stars
- Mass transfer can be stable or not
- Common envelope will shrink the orbit and could be responsible for planetary nebulae shapes

