Photometric Surveys

Sarah Casewell STFC Ernest Rutherford Fellow/Lecturer

Flux and Luminosity

Luminosity of a star is the amount of energy it emits into space per unit time

$$L = 4\pi R^2 \sigma T_{eff}^4 \quad J/s$$

Power per unit area received from the object is the **flux**. At distance d:

$$F = \frac{L}{4\pi d^2} \qquad \mathrm{W}\,\mathrm{m}^{-2}$$

https://physics.weber.edu/palen/phsx1040/lectures/ltempmotion.html#q2

Flux and Luminosity

Power per unit area received from the object is the **flux**. At distance d:

$$F = \frac{L}{4\pi d^2} \qquad {\rm W\,m^{\text{-}2}} \qquad {\rm But\ archives\ give\ magnitudes\ not\ flux!}$$

$$m_1 - m_2 = -2.5 \log_{10} \frac{F_1}{F_2}$$
 Set m₁ to zero, and F1 to zeropoint

Filter profiles: common ground based

Filter profiles: SVO!

Astronomy (7574) Planetary science (616) Earth Obs. (2439)

2MASS	AAO	ADEOS	AKARI	Akatsuki	AlSat1	APEX	APO	Aqua	ARCHEOPS	ARGO	Astrosat	Beijing1	Bepi-Colombo	BICEP
BLAST	ВОК	BOOMERANG	CAHA	Cameras	Cassini	CASTOR	CFHT	CHEOPS	Clementine	COBE	COMS	Contour	Corot	COSMOSOMAS
CSST	CTIO	Dawn	DeepImpact	DENIS	DOT	DSCOVR	Envisat	EROS	ERS	ESO	Euclid	ExoMars	FengYun	Flock
FLWO	GAIA	GALEX	Galileo	GCOM-C	GCPD	Gemini	Generic	Geneva	GeoEye	Giotto	GOES	GOTO	GTC	Hayabusa2
НСТ	Herschel	Himawari	Hipparcos	HST	IAC80	IKONOS	ING	INSAT	InSight	INT	Integral	IRAM	IRAS	IRS
IRSF	IRTF	ISO	IUE	JCMT	JPSS	JWST	Keck	Kepler	KOMPSTAT	KPNO	Landsat	LasCumbres	LaSilla	LBT
LCO	LICK	Liverpool	LMT	LRO	LSST	LYRA	Mariner10	Mars2020	MAXIMA	McD	MER	Mercator	Messenger	Meteosat
МЕТОР	MEX	Misc	МКО	MMT	MOA	МОМ	MOST	MRO	MSX	NAOC	NEAR	NewHorizons	NigeriaSat1	NIMBUS
NIRT	NOAA	NOAO	NOT	OAF	OAJ	OAN-SPM	OAO	Odyssey	OLIMPO	OSIRIS-REX	OSN	OVRO	P200	Palomar
PAN-STARRS	Paranal	Parasol	Pathfinder	PLANCK	Pleiades	PRIRODA	QuickBird	QUIET	QUIJOTE	RapidEye	Rosetta	SALT	SAO	Scorpio
SeaStar	Selene	Sentinel	SEOSAT	SkyMapper	SkySat	SLOAN	SMART1	SOFIA	SOHO	SolarOrbiter	Special	SPECULOOS	SPIDER	Spitzer
SPOT	SPT	SSOT	Stardust	STELLA	Subaru	Swift	TAUVEX	TCS	TD1	Terra	TESS	TIROS-N	OLT	TNG
TNO	TNT	TopHat	ТҮСНО	UK-DMC	UKIRT	VATT	VenusExpress	Viking	Voyager	WASP	WFIRST	WHT	WISE	WIYN
WMAP	WorldView	XMM	ZiYuan											

Zeropoint – flux of a zero mag star

PAN-STARRS/PS1.g

Filter Descripti	on	Mathema	tical prop	erties	
Filter ID (?) :	PAN-STARRS/PS1.g	Property	Calculated	Specified	Unit
Description (?) :	PS1 g filter	λ_{ref} (?) :	4849.11		(Angstror
Phot.System (?) :	PAN-STARRS	λ _{mean} (?):	4900.12		(Angstror
Detector Type (?) :	Photon counter	λ_{cen} (?):	4936.01		(Anastror
Band Name (?):	g	λ ((2))	4810 16		(Angstror
Obs. Facility (?) :	PAN-STARRS	Nerr (.)	4010.10		(Angstro
Instrument (?) :	PAN-STARRS	λ _{peak} (?):	5390.00		(Angstror
Comments (?) :	Including the nominal 1.2 airmasses of the Pan-STARRS1 standard atmospheric extinction.	λ_{pivot} (?) :	4849.11		(Angstro
		λ_{phot} (?) :	4844.96		(Angstro

Transmission

Data	file:	ascii,	VOTat	bl
------	-------	--------	-------	----

Reference for filter response: U. Hawaii

Property	Calculated	Specified	Unit
λ_{ref} (?) :	4849.11		(Angstrom)
λ_{mean} (?) :	4900.12		(Angstrom)
λ_{cen} (?) :	4936.01		(Angstrom)
λ_{eff} (?) :	4810.16		(Angstrom)
λ_{peak} (?) :	5390.00		(Angstrom)
λ_{pivot} (?) :	4849.11		(Angstrom)
λ_{phot} (?) :	4844.96		(Angstrom)
λ _{min} (?) :	3949.50		(Angstrom)
λ_{max} (?) :	5593.87		(Angstrom)
W_{eff} (?) :	1053.08		(Angstrom)
FWHM (?):	1148.66		(Angstrom)
A _f /A _V (?) :	1.17		()
F _{sun} (?) :	189.41		(erg/cm2/s/A)

Calibration properties

Vega System			
Property	Specified	Calculated	Unit
Zero Point (?) :		5.05397e-9	(erg/cm2/s/A)
		3964.03	(Jy)
ZP Type (?):	Pogson		
PhotCal ID (?):	PAN-STAR	RS/PS1.g/Ve	ga

AB System Specified Calculated Unit Property 4.62937e-9 (erg/cm2/s/A) Zero Point (?) : ------3631.00 (Jy) -----Pogson ZP Type (?) : PhotCal ID (?) : PAN-STARRS/PS1.g/AB

ST System

Specified Calculated Unit Property

Check mags!! Vega or AB

Photometry compared to spectrum

Separation (AU)

Farihi et al., 2016

Passbands – caution!

Gaia filters are HUGE Not best option for SEDs

0.8-

Transmission •••

0.2-

4000

5000

6000

7000

Wavelength (A)

8000

Passbands – caution!

GaiaDR3 J-PAS Synt.Phot.

Gaia DR3 J-PAS Synt.Phot. Synthetic photometry in the J-PAS bands obtained from the Gaia DR3 BP/RP spectra using the GaiaXPy tool. More Info.

Filters:	✓OAJ/JPLUS.uJAVA	✓OAJ/JPLUS.J0378	✓OAJ/JPLUS.J0395
	✓OAJ/JPLUS.J0410	✓OAJ/JPLUS.J0430	✓OAJ/JPLUS.gSDSS
	✓OAJ/JPLUS.J0515	✓OAJ/JPLUS.rSDSS	✓OAJ/JPLUS.J0660
	✓OAJ/JPLUS.iSDSS	✓OAJ/JPLUS.J0861	✓OAJ/JPLUS.zSDSS
	✓OAJ/JPAS.uJava	✓OAJ/JPAS.u	✓OAJ/JPAS.J0378
	✓OAJ/JPAS.J0390	✓OAJ/JPAS.J0400	✓OAJ/JPAS.J0410
	✓OAJ/JPAS.J0420	✓OAJ/JPAS.J0430	✓OAJ/JPAS.J0440
	✓OAJ/JPAS.J0450	✓OAJ/JPAS.J0460	✓OAJ/JPAS.J0470
	✓OAJ/JPAS.J0480	✓OAJ/JPAS.gSDSS	✓OAJ/JPAS.J0490
	✓OAJ/JPAS.J0500	✓OAJ/JPAS.J0510	✓OAJ/JPAS.J0520
	✓OAJ/JPAS.J0530	✓OAJ/JPAS.J0540	✓OAJ/JPAS.J0550
	✓OAJ/JPAS.J0560	✓OAJ/JPAS.J0570	✓OAJ/JPAS.J0580
	✓OAJ/JPAS.J0590	✓OAJ/JPAS.J0600	✓OAJ/JPAS.J0610
	✓OAJ/JPAS.J0620	✓OAJ/JPAS.rSDSS	✓OAJ/JPAS.J0630
	✓OAJ/JPAS.J0640	✓OAJ/JPAS.J0650	✓OAJ/JPAS.J0660
	✓OAJ/JPAS.J0670	🗸 OAJ/JPAS.J0680	✓OAJ/JPAS.J0690
	✓OAJ/JPAS.J0700	✓OAJ/JPAS.J0710	✓OAJ/JPAS.J0720
	✓OAJ/JPAS.J0730	✓OAJ/JPAS.J0740	✓OAJ/JPAS.J0750
	✓OAJ/JPAS.J0760	✓OAJ/JPAS.iSDSS	✓OAJ/JPAS.J0770
	🗸 OAJ/JPAS.J0780	✓OAJ/JPAS.J0790	🗸 OAJ/JPAS.J0800
	✓OAJ/JPAS.J0810	🗸 OAJ/JPAS.J0820	🗸 OAJ/JPAS.J0830
	✓OAJ/JPAS.J0840	🗸 OAJ/JPAS.J0850	✓OAJ/JPAS.J0860
	✓OAJ/JPAS.J0870	🗸 OAJ/JPAS.J0880	✓OAJ/JPAS.J0890
	🗸 OAJ/JPAS.J0900	🗸 OAJ/JPAS.J0910	✓OAJ/JPAS.J1007

Search radius: 5 arcsec Show flux limits

Passbands – caution!

GaiaDR3 J-PAS Synt.Phot.

Gaia DR3 J-PAS Synt.Phot. Synthetic photometry in the J-PAS bands obtained from the Gaia DR3 BP/RP spectra using the GaiaXPy tool. More Info.

Filters:	✓OAJ/JPLUS.uJAVA	✓OAJ/JPLUS.J0378	✓OAJ/JPLUS.J0395
	✓OAJ/JPLUS.J0410	✓OAJ/JPLUS.J0430	✓OAJ/JPLUS.gSDSS
	✓OAJ/JPLUS.J0515	✓OAJ/JPLUS.rSDSS	✓OAJ/JPLUS.J0660
	✓OAJ/JPLUS.iSDSS	✓OAJ/JPLUS.J0861	✓OAJ/JPLUS.zSDSS
	✓OAJ/JPAS.uJava	✓OAJ/JPAS.u	✓OAJ/JPAS.J0378
	✓OAJ/JPAS.J0390	✓OAJ/JPAS.J0400	✓OAJ/JPAS.J0410
	✓OAJ/JPAS.J0420	✓OAJ/JPAS.J0430	✓OAJ/JPAS.J0440
	✓OAJ/JPAS.J0450	✓OAJ/JPAS.J0460	✓OAJ/JPAS.J0470
	🗸 OAJ/JPAS.J0480	✓OAJ/JPAS.gSDSS	✓OAJ/JPAS.J0490
	✓OAJ/JPAS.J0500	✓OAJ/JPAS.J0510	✓OAJ/JPAS.J0520
	✓OAJ/JPAS.J0530	✓OAJ/JPAS.J0540	✓OAJ/JPAS.J0550
	✓OAJ/JPAS.J0560	✓OAJ/JPAS.J0570	✓OAJ/JPAS.J0580
	✓OAJ/JPAS.J0590	✓OAJ/JPAS.J0600	✓OAJ/JPAS.J0610
	✓OAJ/JPAS.J0620	✓OAJ/JPAS.rSDSS	✓OAJ/JPAS.J0630
	✓OAJ/JPAS.J0640	✓OAJ/JPAS.J0650	✓OAJ/JPAS.J0660
	✓OAJ/JPAS.J0670	🗸 OAJ/JPAS.J0680	✓OAJ/JPAS.J0690
	✓OAJ/JPAS.J0700	✓OAJ/JPAS.J0710	✓OAJ/JPAS.J0720
	✓OAJ/JPAS.J0730	✓OAJ/JPAS.J0740	✓OAJ/JPAS.J0750
	✓OAJ/JPAS.J0760	✓OAJ/JPAS.iSDSS	✓OAJ/JPAS.J0770
	🗸 OAJ/JPAS.J0780	✓OAJ/JPAS.J0790	🗸 OAJ/JPAS.J0800
	✓OAJ/JPAS.J0810	🗸 OAJ/JPAS.J0820	🗸 OAJ/JPAS.J0830
	🗸 OAJ/JPAS.J0840	🗸 OAJ/JPAS.J0850	🗸 OAJ/JPAS.J0860
	✓OAJ/JPAS.J0870	✓OAJ/JPAS.J0880	✓OAJ/JPAS.J0890
	🗸 OAJ/JPAS.J0900	✓OAJ/JPAS.J0910	✓OAJ/JPAS.J1007

Case study: Photometric vs Spectroscopic effective temperature

Case study: Photometric vs Spectroscopic effective temperature

Time-series photometry

- WD+L6-L8
- 0.4M_{sun}+ 53 M_{Jup}
- P=116 Min
- WD T_{eff}= 16500 K
- Halpha emission
- Metal emission
- Day-night diff ~500K

Casewell et al., 2015

K2 vs Ultracam

30 min cadence, "white light"

5 sec cadence, ugr

Kepler/K2

Observes in "white light" Short (1 min) and long (30 min) cadence 115 sq deg FOV Can observe relatively faint stars V~18 etc

Kepler/K2

PDS pre-data conditioning or Simple Aperture Photometry (SAP) Lots of artifacts, big pixel issues

Lots of custom pipelines available that take into account the pixels

Kepler-452b (Jenkins et al., 2015)

Wide-field infrared survey explorer

Observes in mid-IR W1-4 (3.5, 4.5, 8, 22 microns) Confusion can be large, blended

	AllWISE Database Select			
Selection	Descriptions	# Columns	# Rows	Information
0	AllWISE Source Catalog	334	747634026	ī
\bigcirc	AllWISE Multiepoch Photometry Table	48	42759337365	ī
0	AllWISE Reject Table	334	428787253	i
0	AllWISE Atlas Metadata Table	349	18240	i
0	AllWISE Frame Cross-Reference Table	6	21208389	i
0	AllWISE Atlas Inventory Table	7	18240	i
0	AllWISE Atlas Image Inventory Table	76	72960	i
0	AllWISE Refined Pointing Information for the Single-exposure Images	23	2786053	i
	NEOWISE Reactivation Database Select			
Selection	Descriptions	# Columns	# Rows	Information
0	NEOWISE-R Single Exposure (L1b) Source Table	167	151855284766	i
	NEOWISE-R Known Solar System Object Possible Association List (Caution)	54	148580080	i
0	NEOWISE-R Single Exposure (L1b) Frame Metadata Table	255	20349725	i
	NEOWISE-R Single Exposure (L1b) Scan Inventory Table	7	88604	i
0	NEOWISE-R Single Exposure (L1b) Image Inventory Table	90	40699355	i
	WISE All-Sky Database Select			
Selection	Descriptions	# Columns	# Rows	Information
\bigcirc	WISE All-Sky Source Catalog	292	563921584	i
0	WISE All-Sky Single Exposure (L1b) Source Table	233	9479433101	i
	WISE All-Sky Known Solar System Object Possible Association List (Caution)	68	7298315	i
0	WISE All-Sky Reject Table	292	283887651	i
	WISE All-Sky Atlas Metadata Table	325	18240	i
0	WISE All-Sky Frame Cross-Reference Table	6	14935779	i
0	WISE All-Sky Single Exposure (L1b) Frame Metadata Table	417	1491686	i
0	WISE All-Sky Single Exposure (L1b) Scan Inventory Table	7	6325	i
0	WISE All-Sky Atlas Inventory Table	104	18240	i
0		0.0	50(4417	

Wise: Multi epoch table

				Fu	ll Result Table	Column Ke	y To Time Series T	Cool			
		k	(f1 🕨	(1 - 38 of 38)				9 🖫	目 (j 🍫	· ~ _ ?
source_id_mf	ra (deg)	dec (deg) double	nb int	na int	cc_flags	frame_id	mjd (day) double	w1mpro_ep (mag)	w1sigmpro_ep (mag) double	w1rchi2_ep	w2mpr (mag
0820m364_ac51-023644	82.7142737	-36.6309266	1	0	0000	08224a221	55451.57582350	11.870	0.033	1.492E+0	1
0820m364_ac51-023644	82.7142737	-36.6309266	1	0	0000	08224a220	55451.57569610	11.757	0.039	1.461E+0	1
0820m364_ac51-023644	82.7142737	-36.6309266	1	0	0000	02390a059	55258.62453570	11.822	0.029	1.286E+0	1
0820m364_ac51-023644	82.7142737	-36.6309266	1	0	0000	02394a058	55258.75683970	11.823	0.027	1.287E+0	1
0820m364 ac51-023644	82 7142737	-36 6309266	1	٥	0000	02398a058	55258 88914380	11 789	0 025	1 303F+0	1

Wise: IRSA time series tool

	IRSA DATA SET	S SEARCH TO	DOLS	HELP							
	Time Series	S TOOI Uploa	d	Help							Backgr
											Prep
Column Selection	Image	es			?					⊕.⇔⊡	8839
Mission: WISE/NEOWISE Time Column: mjd Value Column: w1mpro_ep Period: Period Finder	Li C	mage display: • W1 W2	2 W3	• W4		11.75-	3		Input Data		
https://irsa.ipac.caltech.e ×	【 ◀ 1 of 1 ▶ ▶	(1 - 38 of 38)	TEXT T	i (5 5 0	d 11.8-					
source_id_mf	ra (deg) <i>double</i>	dec (deg) double	nb int	na co int	flags char	E 11.85-	•				•
0820m364_ac51-023644	82.714273700000007	-36.63092660000002	1	0 000		11.9-					
0820m364_ac51-023644	82.714273700000007	-36.630926600000002	1	0 000							
0820m364_ac51-023644	82.714273700000007	-36.63092660000002	1	0 000)				1	1	•
0820m364_ac51-023644	82./142/3/0000000/	-36.630926600000002	1	0 000)	5.525e+	4	5.53e+4	5.535e+4	5.54e+4	5.545e+4
	02./172/3/0000000/	-30.030920600000002	1	0 000	,				mjd (day)		

Wise

Light curve – poorly sampled Useful to confirm variability or odd colours Can play with the period/periodogram

		AllWISE Database Select							
		Selection	Descriptions		# Columns	s # Rows	Informat		
		0	AllWISE Source Catalog		334	747634026	i		
		0	AllWISE Multiepoch Photometry Table		48	42759337365	i		
		0	AllWISE Reject Table		334	428787253	i		
	WISE/NEOV	WISE Enhand	ced and Contributed Products Selec	:t	240	10040			
Selection	I	Descriptions		# Columns	# Rows	Informat	tion		
0	CatWISE2020 Catalog			185	1890715640	i			
0	CatWISE2020 Reject Table			186	341799385	i			
0	CatWISE Preliminary Catalog			182	900849014	i			
0	CatWISE Preliminary Reject Table			183	167831546	i			
0	unWISE Catalog			49	2214734224	i			
0	NEOWISE Derived Diameters and Albedos of	Solar System S	mall Bodies Catalog v2	25	183412	i			
		E Dest Care			202	5(2021594			
			WISE All-Sky Source Catalog		292	0/70/33101			
			WISE All-Sky Known Solar System Object Possible Association L	st (Caution)	68	7298315	<u>.</u>		
		0	WISE All-Sky Reject Table		292	283887651	<u>i</u>		
		0	WISE All-Sky Atlas Metadata Table		325	18240	i		
		0	WISE All-Sky Frame Cross-Reference Table		6	14935779	i		
		0	WISE All-Sky Single Exposure (L1b) Frame Metadata Table		417	1491686	1		
		0	WISE All-Sky Single Exposure (L1b) Scan Inventory Table		7	6325	i		
		0	WISE All-Sky Atlas Inventory Table		104	18240	1		

Transiting Exoplanet Survey Satellite

Observes in the I(ish) band (Tmag) Each sector observed for ~30 days but,

some areas are in overlapping sectors or continual viewing zone Call for proposals ~once a year: submit targets to the input catalogue (TIC) Long cadence (30 min) and short candence (2 min/20 s) Handy website for checking targets: <u>https://eta-earth.org/tess_play.html</u> MAST access

SS

Transiting Exoplanet Survey Satellite

2 types of lightcurves - FFI go to quick look, 2 min/20s go to SPOC pipeline

TESS:

Handy website for checking targets: <u>https://eta-earth.org/tess_play.html</u> TIC ID, fits file of SPOC lightcurve, curl script Plots binned to 10 mins

TESS Observability

Sector	Camera	CCD	Column [pix]	Row [pix]	Edge Warn
5	3	1	1074.622	1131.447	0
6	3	2	1247.730	1161.983	0
32	3	1	1536.913	1062.675	0
33	3	2	1826.848	1316.373	0

MAST Light Curve Holdings

TIC ID	Sector Number	Exposure Time [s]	Download	Light Curve Preview
192826603	5	120	link	link
192826603	6	120	link	link
192826603	32	20	link	link
192826603	32	120	link	link
192826603	33	20	link	link
192826603	33	120	link	link

; 19 (~32 Myr, ~390 members, 360 pc

Transiting Exoplanet Survey Satellite

Issues!

2 types of lightcurve – use the best for your science Big pixels – crowded fields may be blended Noisy for faint (I>15) objects Multiple extraction tools available Data gap for download/spacecraft housekeeping

Next Generation Transit Survey

Similar passband to TESS ~I band Southern hemisphere All stars in a field down to I~15.5 13s cadence

Typical field observed for 60 days, but many for longer

+ ES+ 0 +	European Southern Observatory								ESO — Rea	ching New Hei	ghts in Astronomy I 👥 対长 - 🏣
Public	Science	User Portal	Intranet					Contact	Site Map	Search	Go!
Science Users	Information > Science	e Archive Facility > No	ews and Updates >	Second data release of	the Next Generation Tra	ansit Survey					20 Sep 2022
Science Arcl	hive Facility	Second dat	a roloaca of t	he Next Cone	ration Transit	SURIOV					
Data Portal			a release or l	The Mexi Gene		Survey					
ESO Data		Published: 20 J	ul 2020								
Hubble Space	Telescope Data	The Next Generation Transit Survey (NGTS) is a ground based exoplanet survey designed to detect Neptune and super-Earth sized planets orbiting around bright stars, using the transit method. The NGTS facility consists of 12 fully-robotic 20 cm f/2.8 telescopes located at the ESO site on Paranal, Chile. Each telescope has a 2.8x2.8 deg ² field of view and is equipped with a custom filter with a bandpass of 520-890nm, which increases sensitivity to late-K and early-M stars.									
Virtual Observ	atory Tools										
Catalogues, P	lates and DSS										
Tools and Doc	umentation	This second data release (DR2) includes 72 separate fields that have been completed from the start of commissioning in September 2015, till April 2018. The data of the 24 fields									
Related Extern	nal Services	already provided within DR1 have been reprocessed with an improved version of the reduction pipeline. A source catalogue down to 16 th magnitude is provided, together with the light									
ESO & HST In	nage Galleries	a 13 second cadence, collecting almost 110 billion photometric measurements in total. The overall data volume is about 4 Terabytes.									
News and Up	dates	All data are publicly appropriate from the Science Portal or programmatically in a file by file faction. Der source data approach is provided by the Octoberge Facility or via TAP									
FAQ		Detailed information is available in the accompanying release documentation.									
ESO Data Acc	cess Policy			. , ,							

Next Generation Transit Survey

NGTS-1b M dwarf star Half mass and size of sun Orbit is 2.3 days 0.8 Jupiter masses 1.33 Jupiter radii NGTS-4b K dwarf star 3/4 size of sun Orbit is 1.33 days 0.06 Jupiter masses 20 Earth masses

Images: Mark Garlick

Next Generation Transit Survey: Caveats

Ground based – so 8-14 hrs observing a night Weather dependent Big pixels (but smaller than TESS Affected by the moon Affected by VLT laser!!!!

NGTS

Zwicky Transient Facility

Located at Palomar so Northern Low cadence: Whole sky every 2 days g,r,i Access via IRSA

van Roestel et al., 2022

Zwicky Transient Facility								
ZTF	CATALOGS	(http://}						
ZTF Image Acc	cess Catalog Search	ZTF Progr	ram Interface	ZTF Documentation				
Mission Characteristics								
Survey Duration:	Phase I: Feb 2018 - Sept 2020	Ph	Phase II: Dec 2020 -					
Partners:	Caltech, IPAC, the Weizmann Institute for Sc the Oskar Klein Center at Stockholm Univers University of Maryland, the University of Washington, Deutsches Elektronen-Synchro Humboldt University, Los Alamos National Laboratories, the TANGO Consortium of Taiv University of Wisconsin at Milwaukee, and Li Berkeley National Laboratories. Operations of conducted by Caltech Optical Observatories and University of Washington.	cience, Ca sity, the Os un tron and Sy Co wan, the Mil awrence Na were Ru , IPAC, Op Ob	Caltech, IPAC, the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University of Maryland, Deutsches Elektronen- Synchrotron and Humboldt University, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee, Trinity College Dublin, Lawrence Livermore National Laboratories, IN2P3, University of Warwick, Ruhr University Bochum and Northwestern University. Operations are conducted by Caltech Optical Observatories, IPAC, and University of Washington.					
Description:	ZTF is a fully-automated, wide-field survey aimed at a systematic exploration of the optical transient sky.							
Filters:	ZTF_g, ZTF_r, ZTF_i							
Survey Coverage:	Approximately 25,000 to 30,000 square degrees, the Northern sky visible from Palomar Observatory.							
Instruments:	16 6k x 6k CCDs filling the focal plane with a 47 sq. deg. field of view.							
Canonical Papers:	ZTF Science Data Processing System: Masci et al. (2019) ZTF Technical Specifications and Survey Design: Bellm et al. (2019)							
Data Releases:	Latest: Data Release 13, 2022-09-07							

Zwicky Transient Facility: Alert brokers

Community Alert Brokers

The alert stream archive provides only nightly summaries of the ZTF alerts. There is currently a suite of public event brokers that provide real time access to the ZTF alert stream.

tar file of all 5 sigma events Need to filter for your science Some brokers (Lasair) get live access Jupyter notebooks available

Create your own watchlist

List of known objects or "things that do X" Will email when an object does something

Vera C. Rubin Telescope (LSST)

8.4m mirror near La SerenaSurveys whole sky in 3 nights6 colours, ugrizyAlert brokers being tested on ZTFPlans for drop outs as well as brightening events

Science Collaborations – join them! Galaxies Stars, Milky Way and Local Volume Solar System Dark Energy Active Galactic Nuclei Transients/Variable stars Strong Lensing Informatics and Statistics https://www.lsstcorporation.org/sciencecollaborations

Vera C. Rubin Telescope (LSST)

What will Rubin Observatory data look like?

Rubin Observatory will deliver calibrated images and data products on a daily and annual basis, and will provide the science community with the Rubin Science Platform to enable data access and analysis.

Read more or view a short recorded presentation about the planned data products, their processing pipelines, and the resources for the science community.

Prompt data products (for transients, variables, and moving objects):

- Alert packets for sources detected in difference images (difference = direct-template), delivered to brokers (60 seconds).
- Catalogs of sources (associated by location into "objects") detected in difference images (24 hours).
- Catalogs of moving objects with orbital parameters from the MPC (a result of daytime processing).
- Direct and difference images (24 hours).

Data Releases data products (for static sky sources like stars and galaxies):

- A global and uniform processing of all the data taken from the start of the survey until a given date (typically 6 months before the release).
- Raw and calibrated images, the calibration data, and deeply stacked coadded images.
- Source and object catalogs with measurements (centroids, fluxes, magnitudes, shape and size parameters, and more).
- Includes re-processed Prompt data products and direct image light curves.

Catalina Sky Survey

24 days observing (not during full moon) Searching for Near Earth Object Candidates Data released through Caltech Interface is a bit clunky Search on object name etc

20

Catalina Sky Survey

Light Curves

V mag

Please wait!

SuperWASP

Northern and Southern Bright objects only Cadence can be very scattered Over 100 planets discovered Binaries catalogued in TEPCat <u>https://www.astro.keele.ac.uk/~jkt/tepcat/</u> Data at NASA Exoplanet archive

Wasp-91b: Anderson et al., 2017

NASA E	A EXOP	LANE CIENCE II	T ARC	HIVE		
Home	About Us	Data	Tools	Support	Login	
🖸 SuperV	VASP Survey In	formation				

Data from the first WASP public data release were acquired from 2004 to 2008 and are made available via the Exoplanet Archive by the SuperWASP consortium.

SuperWASP Survey

SuperWASP is the UK's leading extra-solar planet detection program comprised of a consortium of eight academic institutions. SuperWASP consists of two robotic observatories that operate continuously throughout the year, allowing coverage of both hemispheres of the sky. The first, SuperWASP-North, is located on the island of La Palma among the Isaac Newton Group (ING) of telescopes. The second, SuperWASP-South, is located at the site of the South African Astronomical Observatory (SAAO), just outside Sutherland, South Africa. The observatories each consist of eight wide-angle cameras that simultaneously monitor the sky for planetary transit events. The eight cameras allow the monitoring of millions of stars simultaneously, enabling the detection of rare transit events.

Exoplanet Archive SuperWASP resources

The Exoplanet Archive include nearly 18 million WASP time series, or roughly 17 terabytes (TB) of data, which is too large to view or download through a web browser. See the links below to search or download these data.

NOTE: Not all confirmed WASP planet light curves are available in the first public WASP data release, but may be included in future releases. To retrieve the currently available public WASP light curves for confirmed WASP planets, please see the Bulk Download page.

SuperWASP Bulk Download

Advice:

- Search all catalogues possible
- Don't forget high energy or radio
- Low cadence data may help confirm conclusions even if its not "science quality"
- Instruments capable of fast cadence (Ultracam, Hipercam, Hawk-I are available)
- Getting an SED using SVO (see workshop later in the week) is useful
- Some knowledge of SQL can be really useful!

Useful links:

- Galex:https://archive.stsci.edu/missions-and-data/galex
- XMM Serendipitous Source Cat:https://xmmssc.aip.de/cms/catalogues/4xmm-dr12s/ SDSS: https://dr17.sdss.org
- Superwasp: https://exoplanetarchive.ipac.caltech.edu/docs/SuperWASPMission.html
- Panstarrs: https://catalogs.mast.stsci.edu/panstarrs/
- CSS: http://nesssi.cacr.caltech.edu/DataRelease/
- 2MASS: https://irsa.ipac.caltech.edu/Missions/2mass.html
- UKIDSS: http://wsa.roe.ac.uk/index.html
- VISTA: <u>http://horus.roe.ac.uk/vsa/index.html</u>
- WISE: <u>https://irsa.ipac.caltech.edu/Missions/wise.html</u>
- IRSA finder: <u>https://irsa.ipac.caltech.edu/applications/finderchart/</u>
- Filter profiles: <u>http://svo2.cab.inta-csic.es/theory/fps/index.php?id=GAIA/GAIA2.G</u> Unit conversion: <u>https://www.stsci.edu/~strolger/docs/UNITS.txt</u>