A basic introduction to optical interferometry

Henri Boffin

Visual Binary

Both stars in the binary system can be spatially resolved

Mizar A & B

seeing limited \rightarrow separation ~ 0.3" or more

SiriusA & B

A close example

Luhman 16 AB
2 brown dwarfs
Separation 1.5"
Distance 2 pc
→ 3 AU separation

Boffin+13 FORS2

Visual Binary

Both stars in the binary system can be spatially resolved

Mizar A & B

SiriusA & B

seeing limited \rightarrow separation ~ 0.3" or more

HST and AO on ground $\rightarrow \sim 0.05$ " Diffraction limit of VLT: $1.22\lambda/D = 0.017$ " (=17mas) for a D=8m telescope in the visible (λ =550nm)

Surdej 10

Need for very large telescopes !!!

Visual Binary

Both stars in the binary system can be spatially resolved

Mizar A & B

seeing limited \rightarrow separation ~ 0.3" or more HST and AO on ground \rightarrow ~ 0.05"

To resolve smaller objects: interferometry! \rightarrow a few 0.001" (mas)

SiriusA & B

• H. Fizeau and E. Stephan (1868-1870):

"In terms of angular resolution, two small apertures distant of B are equivalent to a single large aperture of diameter B"

Surdej 10

Some orders of magnitude

1.22 λ /D = 0.017" (=17mas) for an D=8m telescope in the visible (λ =550nm) 1 arcsec = 1 astronomical unit (150x10⁶km) seen from a distance of 1 parsec (~3.26 light years)

From the closest star (proxima Cen, d=1.3pc): the Sun appears 0.007"=7mas

Closest star forming regions at d ≈ 140pc: 1" is 140 au ≈ 3x Pluto's orbit 0.017" is 2.4 au ≈ asteroid belt 1 mas is 0.14 au ≈ within Mercury orbit

At 1 kpc, 1 mas is 1 au \rightarrow ideal for binary stars

Larger source

Define |fringe visibility| as (Imax-Imin) / (Imax+Imin)

Still larger source

No fringes remain (cancellation). Little fringing seen for larger sources than λ/d either.

Fringe visibility

The fringes' amplitude and phase is called the complex visibility

- Baseline vector $\vec{B} = (u, v)$ [same unit as λ]
- Pointing vector $\vec{s} = (x, y)$ [in rad]
- The complex visibility is the normalized Fourier transform of the image I(x,y):

 $V(u, v, \lambda) = \frac{\iint I(x, y)e^{-2\pi i(xu+yv)/\lambda}dxdy}{\iint I(x, y)dxdy}$

[Van Cittert – Zernike Theorem]

Single baseline gives very limited information

- Binaries separated by α, 2α, 3α, ... have same fringe pattern for a given B
- Image is 2D and baseline is 1D

The complex visibility is defined by

Amplitude \rightarrow generally use the intensity \simeq Visibility²

Phase \rightarrow this cannot be used on its own, generally

Recover the phase information

- The atmosphere induces phase jitter >> 2π
- Sum of phases in a triangle are immune to the turbulence: closure phase

$$CP = (\phi_{12} + \phi_a) + \phi_{23} + (\phi_{31} - \phi_a)$$

= $\phi_{12} + \phi_{23} + \phi_{31}$

Centro-symmetric images

Uniform disc

Visibility = "contrast" of the fringes

- \rightarrow Tells about the size of an object
 - \rightarrow The smaller the visibility, the larger the object

Closure Phase

 \rightarrow Tells about the shape and orientation of an object

Observations are done in the **u-v plane**: the more baselines, the better the resulting fit/image

Binary star visibility curve as a function of baseline

Binary star example

David Buscher 18

B ~ 140m λ ~ 2.2μm λ/B ~ 3mas

1

VLTI – The UTs

VLTI – The UTs

ATs: Small configuration

Intermediate configuration

Large configuration

Small configuration

Intermediate configuration

Large configuration

-30

-40

-50

-60

-70

-80

-9

-50

0

U (Mλ - 10^6/rad)

-40

-60

-80

-100

-120

-140

Made by ASPRO 2/JMMC

50

Declination: : -52 degrees

Declination: -16 degrees

A disc of 2 mas diameter

A disc of 2 mas diameter

1.1

1.0

0.9

0.8

0.2

0.1

0.0

-0.1 200

150

100

T3PHI (deg)

-100

-150

-200

0.7 0.6 0.5 0.4 0.3

SPATIAL_FREQ (MA - 10^6/rad)

A disc of 5 mas diameter

A disc of 5 mas diameter

Elongated disc

Importance of spectral information

Spatial frequencies are measured in units of wavelengths \rightarrow more points if spectral channel are available

VLTI Instruments

> PIONIER H band ($\lambda \approx 1.6\mu m$), R ≈ 50

GRAVITY K band (λ ≈ 2.2µm), R ≈ 20, 500 and 4000

> MATISSE

L,M,N bands ($\lambda \approx 3$ to 12µm), R ≈ 30 , 500, 1000 and 3500

Spectral capabilities

A. Mérand

Differential visibilities

A. Mérand

Imaging at VLTI

A. Mérand

Some VLTI images

In most cases, we do not have enough data points to cover the (u,v) plane and we cannot invert the data to get meaningful data

 \rightarrow Make fit of models instead

Observe your data!

- Starting from a good first guess may be decisive -

R. Milan-Gabet

Symbiotic stars observed with PIONIER: Visibilities

Can generally be fitted with a simple uniform disc

- \rightarrow Get the diameter of the stars
- \rightarrow Can compare with their Roche lobe radius

Boffin+ 14

HD 352 - Elongated

Boffin+ 14

HD 352 - Elongated

Elongation ratio: 1.16 1.38 x 1.6 mas

 \rightarrow Tidal deformation?

Boffin+ 14

Image Reconstruction

PIONIER data - 2 month-span

Orbit

Visual orbit + distance \rightarrow total mass

Spectroscopic orbit \rightarrow mass ratio

 \rightarrow Get the masses of both stars!

Type of Data: OIFITS file

VLTI instruments → pipeline → get reduced data: PIONI.2019-07-30T07-32-59.267_oidataCalibrated.fits

OIFITS – specific FITS format for interferometry

- Squared visibilities (VIS2)
- Complex visibilities (VISAMP, VISPHI)
- Bispectrum (T3AMP, T3PHI)

We typically only use VIS2 and T3PHI

ASPRO

helps you to prepare observations on various optical interferometers

Interferometer sketch: display base lines of the selected configuration(s)

Observability plot: represents time intervals when the source can be observed

UV Coverage plot: shows projected base lines on the UV plan and an image of the source model to see the UV coverage of the source

OIFits viewer: provides several OIFits data plots (square visibility and closure phase vs spatial frequency ...) including error bars and spectral dispersion

Target editor: show complete target information, edit missing target magnitudes and associate calibrators to your science targets

Model editor: each source can have its own object model composed of several elementary models (punct, disk, ring, gaussian, limb darkened disk ...) or an user-defined model (FITS image)

Observing Blocks can be generated

OIFits file generation with error and noise modelling

LITpro: Lyon Interferometric Tool prototype

- Parametric model fitting software for interferometry
- Complementary to image reconstruction
 - Sparse (u,v) coverage
 - Model fitting extracts measured quantities

• •		LITpro [c2]				
) 🔛 🔝 🔀 📷 🗠 👘						
ettings tree	Target panel					
Settings	Ident: HD 45509					
> 🛅 Files	Fitter setup					
Targets	🗸 Normalize total flux Select data to fit: 🛛 VISamp 🔍 VISphi 💋 VIS2 📄 T3amp 📝 T3phi					1
Target (HD 45509)	Model list Salested file list					
File[Aspro2_HD_45509_VLT]	elong dirk	nonorm flatten dirk	Selected menst			
File[Aspro2 HD 45509 VLTI	punct	punct	File[Aspro2_HD_45509_VLT]	pro2_HD_45509_VITI_PIONIER_1.533-1.772-6ch_A0-62-01-00_2010-09-21.0		
elong_disk		punct_BB	File[Aspro2_HD_45509_VLT_PIONIER_1.533-1.772-6ch_D0-G2-J3-K0_2010-09-21.fits]			
i punct						
Shared parameters[0]		stretched_disk_BB				
Results		stretched_gauss_bspline1_ring16	line1_ring16 line1_ring2			
Fit Result 2022-09-20 00:10:		stretched_gauss_bspline1_ring2				
Fit Result 2022-09-26 06:20:3		+ - 0				
Fit Result 2022-09-26 06:21:5						
Plotting vis2	Parameters					
Plotting vis2 residuals	Name Type Uni	ts Value M	finValue MaxValue	Scale	HasFixedValue	
Plotting t3phi Plotting t3phi sociduals	elong_disk1.nux_weight1_nux_weight elong_disk1.x1 x ma	s 0.000	0			
Plots	elong_disk1.y1 y ma	s 0				
Model VIS2 of targets [1] 0.0	elong_disk1.minor_axis minor_axis_diameter ma elong_disk1_elong_ratio1_elong_ratio	5 1.506	0			
Model Image of HD 45509	elong_disk1.major_axis major_axis_pos_an deg	rees 44.995	ō	180		
Model Image of HD 45509	punct2.flux_weight2 flux_weight	0.333	0			
Model Image of HD 45509	punct2.x2 x ma	1.043				
Model Image of HD 45509	Plot model panel					
	Plot image 2 pixscale 0.02					
		FoV (mas) : 15			
	Plot shifter map 🧭 pixscale 1					
	Plot Radial 🕜 VIS2 😌 🛛 I	Residuals 🛛 Overplot model with cut	angle 0.00			
	Plot UV Map 🕜					
	Cuts in the chi2 space panel					
	Plot Chi2 1D	Parameter[flux_weight1]	min 0.0 ma	x 30	#samples 10	
	V log V reduced with fit 0 2D	Parameter[x1]	min - 30 ma	x 30	#samples 10	1
Use max iterations	Name Type	Units Value	MinValue MaxValue	Scale	HasFixedValue	
Skip plots	elong_disk1.flux_weight1 flux_weight	0.666	0			
	elong_disk1.x1 x	mas 0				

Let's do some hands-on!