Eclipsing Binaries and Asteroseismology

Logo

Precise fundamental stellar parameters in the golden age of time-domain astronomy

  • Home
  • Registration
  • La Palma
  • Programme
  • Photos
  • Iterative pre-whitening examples

    TESS data

    This notebook provides an example for running an iterative pre-whitening (IPW) analysis for a variable star observed by the TESS space satellite for a duration of 27 days.

    For this notebook, you’ll need to download: test_tess.dat

    %matplotlib notebook
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    from pythia.utils.resampling import run_mean_smooth
    from pythia.timeseries.periodograms import LS_periodogram
    from pythia.timeseries.iterative_prewhitening import run_ipw
    
    
    
    plt.rcParams.update({
        "text.usetex": True,
            "font.family": "sans-serif",
        "font.sans-serif": ["Helvetica"]})
    plt.rcParams.update({
        "pgf.rcfonts": False,
        "pgf.texsystem": "pdflatex",
        "pgf.preamble": "\n".join([
             r"\usepackage{amsmath}",
             r"\usepackage[utf8x]{inputenc}",
             r"\usepackage[T1]{fontenc}",
             r"\usepackage{cmbright}",
        ]),
    })
    
    plt.rcParams['xtick.labelsize']=18
    plt.rcParams['ytick.labelsize']=18
    

    Let’s open the example TESS data, calculate the window function, and see what the periodogram looks like!

    times,fluxes = np.loadtxt("./test_tess.dat",unpack=True)
    nu_w,amp_w = LS_periodogram(times,np.ones_like(times),f0=0.0001,fn=5.)
    nu,amp = LS_periodogram(times,fluxes-np.mean(fluxes),fn=50.)
    
    
    figw,axw = plt.subplots(1,1,figsize=(6.6957,6.6957),num=1)
    axw.plot(nu_w,amp_w*1e6,'k-')
    axw.plot(nu_w*-1,amp_w*1e6,'k-')
    axw.set_xlabel(r'$\nu\,\,{\rm [d^{-1}]}$',fontsize=14)
    axw.set_ylabel(r'${\rm Amplitude\,\,[ppm]}$',fontsize=14)
    axw.set_title(r'${\rm Window}$',fontsize=14)
    figw.tight_layout()
    
    <IPython.core.display.Javascript object>
    

    fig,ax = plt.subplots(1,1,figsize=(6.6957,6.6957),num=2)
    ax.plot(nu,amp*1e6,'k-')
    ax.set_xlabel(r'$\nu\,\,{\rm [d^{-1}]}$',fontsize=14)
    ax.set_ylabel(r'${\rm Amplitude\,\,[ppm]}$',fontsize=14)
    fig.tight_layout()
    
    <IPython.core.display.Javascript object>
    

    This example is clearly different from the ground-based observations of the RR Lyrae variable.

    There are clearly many, many more frequencies, the window function is much less of an issue, and the there’s a large range in amplitude for the frequencies that we see here.

    We should decide up front how may frequencies we want to extract and how we want to apply the stopping criterion.

    Signal-to-noise ratio

    Typically the significance of a given extracted frequency (or its singal-to-noise ration; SNR) is calculated as the ratio of the amplitude of the signal to some estimate of the noise.

    The nuance lies in how we estimate the noise level. Generally, there are two approaches.

    Approach 1: Frequency window

    The approach first considers the average noise level in a window surrounding the peak being extracted. This approach is complicated by considering the size of the window to use, as there is no uniformly accepted value.

    Let us consider two different window sizes and compare the relative noise levels.

    def get_noise_level_window(nu, amp, window=1.):
        
        npoints = len( nu[ nu <= nu[0] + window ])
        mean_ = run_mean_smooth(amp, npoints)
    
        return mean_
    
    window_1 = 1. #c/d
    window_2 = 4. #c/d
    
    noise_1 = get_noise_level_window(nu, amp, window_1)
    noise_2 = get_noise_level_window(nu, amp, window_2)
    
    fig,ax = plt.subplots(1,1,figsize=(6.6957,6.6957),num=3)
    ax.plot(nu,amp*1e6,'k-')
    ax.plot(nu,noise_1*1e6,'-', color='dodgerblue', label=r'${\rm window=1~d^{-1}}$')
    ax.plot(nu,noise_2*1e6,'-', color='darkorange', label=r'${\rm window=4~d^{-1}}$')
    
    ax.set_xlabel(r'$\nu\,\,{\rm [d^{-1}]}$',fontsize=14)
    ax.set_ylabel(r'${\rm Amplitude\,\,[ppm]}$',fontsize=14)
    ax.set_title(r'${\rm Example}$',fontsize=14)
    ax.legend(loc='upper right')
    ax.set_xlim(0., 50)
    ax.set_ylim(0., 375)
    fig.tight_layout()
    
    <IPython.core.display.Javascript object>
    

    We can clearly see that the estimated noies levels change for frequency regions with a high denisty of modes.

    White-noise frequency range

    The second approach considers the average noise level at some high frequency range that is presumed to be dominated by white-noise.

    def get_noise_level_range(nu, amp, noise_range):
        
        idx = np.where( ((nu>=noise_range[0]) & (nu<=noise_range[1])) )
        mean_ = np.ones_like(nu) * np.median(amp[idx])
    
        return mean_
    
    range_1 = [45.,50.]
    noise_range_1 = get_noise_level_range(nu, amp, range_1)
    
    fig,ax = plt.subplots(1,1,figsize=(6.6957,6.6957),num=4)
    ax.plot(nu,amp*1e6,'k-')
    ax.plot(nu,noise_2*1e6,'-', color='darkorange', label=r'${\rm window=4~d^{-1}}$')
    ax.plot(nu,noise_range_1*1e6,'--', color='dodgerblue', label=r'${\rm range=[45-50]~d^{-1}}$')
    
    ax.set_xlabel(r'$\nu\,\,{\rm [d^{-1}]}$',fontsize=14)
    ax.set_ylabel(r'${\rm Amplitude\,\,[ppm]}$',fontsize=14)
    ax.set_title(r'${\rm Example}$',fontsize=14)
    ax.legend(loc='upper right')
    ax.set_xlim(0., 50)
    ax.set_ylim(0., 375)
    fig.tight_layout()
    
    <IPython.core.display.Javascript object>
    

    Here, we can clearly see that the estimated noise level from the “white noise” frequency range results in a constant, and much lower noise level than the moving window.

    When to stop

    What SNR should you use to stop?

    For ground based – SNR $\ge$ 4 is sufficient. For spaced based data, the points are correlated! –> Need a higher SNR. Several studies demonstrate that using BIC or $p$-value related stopping criterion can result in over-extraction.

    For simplicity, if we’re using ground-based data, we’ll stick to SNR $\ge$ 4, and for space-based data we’ll stick to SNR $\ge$ 5.6.

    Order of removal

    This may seem pedantic, but we need to decide what order to extract frequencies in. Nominally, people select on the highest amplitude signal left in a periodogram. However, it is also common to select on the signal with the highest SNR. Depending on how you estimate the noise level, this can change.

    For instance, if we use the white-noise SNR range from high frequencies, the noise level is constant, and the SNR and amplitude removal approaches reduce to the same result.

    However, if we use a running window:

    snr_w1 = amp/noise_1
    snr_w2 = amp/noise_2
    
    fig,axes = plt.subplots(2,1,figsize=(6.6957,6.6957),num=5)
    
    axes[0].plot(nu,(amp/noise_1),'-', color='black', label=r'${\rm window=1~d^{-1}}$')
    axes[0].plot(nu[np.argmax(amp)], 15, 'ro')
    axes[1].plot(nu,(amp/noise_2),'-', color='black', label=r'${\rm window=4~d^{-1}}$')
    axes[1].plot(nu[np.argmax(amp)], 25, 'ro')
    
    
    axes[0].set_ylabel(r'${\rm Amplitude / Noise}$',fontsize=14)
    axes[1].set_ylabel(r'${\rm Amplitude / Noise}$',fontsize=14)
    axes[1].set_xlabel(r'$\nu\,\,{\rm [d^{-1}]}$',fontsize=14)
    axes[0].legend(loc='upper right')
    axes[1].legend(loc='upper right')
    axes[0].set_xlim(0., 50)
    axes[1].set_xlim(0., 50)
    # ax.set_ylim(0., 375)
    fig.tight_layout()
    
    <IPython.core.display.Javascript object>
    

    In these plots, the red dot denotes the frequency that would be extracted first if we had decided to extract in order of highest amplitude signal.

    In contrast,we can see that the signal at ~20 ${\rm d^{-1}}$ has a higher SNR, and would be selected first. The order in which the remaining frequencies would be extracted according to SNR further depends on how large of a window we use, which can be seen by comparing the top and bottom panels of the above figure.

    The order might be more or less important for your specific science case, the only advice I can give is to try a few methods and see what the results are. And most importantly – WRITE DOWN WHAT YOU’VE DONE IN YOUR PAPER.